Search results for "Fine topology"

showing 2 items of 2 documents

A new Cartan-type property and strict quasicoverings when p = 1 in metric spaces

2018

In a complete metric space that is equipped with a doubling measure and supports a Poincar\'e inequality, we prove a new Cartan-type property for the fine topology in the case $p=1$. Then we use this property to prove the existence of $1$-finely open \emph{strict subsets} and \emph{strict quasicoverings} of $1$-finely open sets. As an application, we study fine Newton-Sobolev spaces in the case $p=1$, that is, Newton-Sobolev spaces defined on $1$-finely open sets.

Discrete mathematicsfine Newton–Sobolev spaceProperty (philosophy)General Mathematicsta111010102 general mathematicsOpen setfine topologystrict quasicoveringType (model theory)function of bounded variationmetriset avaruudet01 natural sciencesMeasure (mathematics)Complete metric spaceCartan propertyfunktioteoria010101 applied mathematicsMetric spacemetric measure spacepotentiaaliteoria0101 mathematicsFine topologyMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

The Choquet and Kellogg properties for the fine topology when $p=1$ in metric spaces

2017

In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the fine topology in the case p = 1. Dans un contexte d’espace m´etrique complet muni d’une mesure doublante et supportant une in´egalit´e de Poincar´e, nous d´emontrons la propri´et´e fine de Kellogg, le quasi-principe de Lindel¨of, et la propri´et´e de Choquet pour la topologie fine dans le cas p = 1. peerReviewed

Pure mathematicsProperty (philosophy)1-fine topologyGeneral MathematicsPoincaré inequalityMathematics::General Topology01 natural sciencesMeasure (mathematics)Complete metric spacefunktioteoriasymbols.namesakeMathematics - Metric GeometryFOS: Mathematics0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsta111Metric Geometry (math.MG)30L99 31E05 26B30function of bounded variationfine Kellogg propertymetriset avaruudet010101 applied mathematicsMetric spacemetric measure spacequasi-Lindelöf principleChoquet propertysymbolspotentiaaliteoriaFine topology
researchProduct